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Abatraet--Melt flow phenomena of magnetic Czochralski processes are simulated numerically. A model 
is established for the system that can grow a 5 inch diameter single crystal from the melt in a 14 inch diameter 
cylindrical crucible. Effective conditions to suppress convection adequately are studied by varying rotation 
rat~.s of the crucible and the crystal for given magnetic fields. When the axial magnetic force is used. the me- 
thod of co-rotation of the crystal and the crucible is found more effective to suppress meridional circulation 
than the conventional counter-rotatio~~ operation. 

INTRODUCTION 

One of the most important techniques for growing 
large-diameter single crystal from the mell is the Czo- 
chralski process. A schematic illustration of Czochral- 
ski crystal growing process is shown in Fig. 1. Melts of 
semiconducting material such as silicon are contained 
in a silica crucible and heated up to approximately 
1500~ by external heater, mainly radio frequency 
heating coils. After appropriate start-up procedures, 
the growing crystal is slowly pulled upward from the 
melt. In most applications the crystal is rotated, with 
the objective of providing a viscous shear layer which 
tends to isolate the growth interface from the turmoil 
taking place in the bulk of the melt. In some cases the 
crucible is also rotated in order to smooth out thermal 
asymmetries which might arise from irregularities in 
the heating. The directions of crystal and crucible rota- 
tions are usually opposite. To control the contaminant 
oxygen diffusing from the crucible wall, the exterior of 
the crucible is surrounded by quartz tubes to'make the 
interior vacuum and sometimes inert gas is also used. 

Since 1970, many authors have reported studies on 
the melt flow during the crystal growth. Some difficul- 
ties in experimental observation of the flow behavior 
have been compensated by the numerical simulations. 
Kobayashi and Arizumi[l] analyzed computationally 
flow patterns in the Czochralski crystal growth system 
using a simple model for various crystal and crucible 
rotation rates at steady-state conditions. Langlois and 
Shir[2] obtained the numerical solution of the time- 
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dependent equations governing the flow in a crystal 
growth crucible. Crochet et al.[3] generated finite ele- 
ment simulations to represent transport phenomena [n 
a Czochralski melt. Later, Langlois[4] suggested that 
crystals of improved quality might be grown by the 
Czochralski process if a baffle plate was placed under 
the crystal face. 

The external magnetic field is widely used to sup- 
press the melt flow in the crucible and thereby to ob- 
tain high-quality single crystals of silicon in recent 
years. Both transverse and axial external field:~ have 
been applied[5-7]. The quantitative description as to 
how the imposed field would affect the convection and 
hence the crystal quality in geometries relevant to the 
growth of single crystals is rarely reported, with 'Lhe ex- 
ception of works by Langlois and Lee [8,9]. Oreper 
and Szekely [10] found that a magnetic field in the 
range of kilogauss does significantly suppress the con- 
vective flow in the model. Langlois [11,12] surveyed 
theoretical developments on flow problems related to 
the Czochralski growth. 

Empirical techniques have played an important 
role in the devemopment of the crystal growth. How- 
ever, computational methods in recent years made 
significant contributions to the understanding of the 
melt flow, as welt as to the finding of optimal operating 
conditions. 

In the present study, we have numerically simu- 
lated the flow behavior in order to suppress convec- 
tion, by introducing a model of Czochralski crystal 
growth process with an axial magnetic field. A model 
is established for the system that can grow a 5 inch dia- 
meter single crystal from the melt in a 14 inch dia- 
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Fig. I. Schematic illustration of the Czochralski pro- 
cess. 

meter cylindrical crucible. The magnetic force effect 
on the convection is investigated with various rotation 
rates in a given magnetic force field. 

MATHEMATICAL FORMULATION 

Theoretical investigations of the convective flow in 
a Czochralski process employ an idealized configura- 
tion in which the top surface is flat and stationary, as 
shown in Fig. 2. Here R c and R s are radii of the cruci- 
ble and the crystal, respectively, and H is the height of 
the melt. The rotation velocities ~Qcof the crucible and 
-Qs of the crystal are usually in opposite directions. 
The radial, azimuthal and axial velocity components 
are denoted by u, v and w, respectively. 

Four types of forces act on the Czochralski process 
with the axial magnetic field: the buoyancy force due 
to the temperature gradient, the centrifugal force due 
to the rotation of the crystal and/or the crucible, the 
thermocapillary force due to the surface tension, and 
the Lorentz force due to the interaction between the in- 
duced current and the externally imposed axial mag- 
netic field. 
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Fig. 2. Geometrical configuration for the bulk-flow 
idealization. 

The presence of the magnetic field and induced 
current introduces a magnetomotive body force into 
the Navier-Stokes equation, which then becomes 

Dv p~-=-17p-pag(T-Ts)+jxB+puV2v {1) 

where p,p,a,T s and v denote, respectively, the density, 
the pressure, the volumetric expansion coefficient, the 
interface temperature and the kinematic viscosity of 
the melt. Andj  and B are the magnetic current density 
and the magnetic field, respectively. For convenience, 
a Svanberg vorticity S and a Stokes streamfunclion 
are introduced such that 

S =-1 (aw au ) (2a) 
r Or Oz 

l o g '  u =  - - - -  (2b) 
r Oz 

1 O g" (2c) 
V ~ . . . .  

r Or 

The equation for S is obtained by cross-differentiating 
and substracting the mefidional components of equa- 
tion (l). 

OS ~_ 1 0 + 0 (77) a t  r ~ r  (ruS) § (wS) az 

r Or r T az ~ r 3r  r Or J + V ~ z '  

(3) 
where r and ~ = rv is the swirl (angular 
momentum per unit mass), a and B o are the electrical 

April, 1989 



Computational Simulation of Melt Flow in Magnetic Czochralski Growth Process 107 

conductivity and the magnetic field strength, respec- 
tively. Since the azimuthal velocity is not a physically 
conserved quantity, the equation for the conserved 
variable ~ is used as follows. 

a /a  k 1 a ( r u f ~ ) + a  (w/a) 
Ot r Or 3z 

, :9 r  v ~ [ r ~  r s 3 ' / a  (4) 
:= - ~'O~- r Or ( r ' ) ) + ' a z  ' "  

Curves of constant ~'j are projections of current-lines 
onto the meridional p!anes. The equation for the cur- 
rent function ~'j is obtained by cross-differentiating 
and substracting the components of current density. 

O . 1 0 I/r,, 1 0 '  u 1 0,.c2 (5) 
N ~ T a r r )  + 7  az' r az " 

The energy equation yields 

aT k& ~ ( r u T ) +  3 
a t  r Or az (wT) 

1 O a T  + 3ZT - 
=,~ (7-gr ( r57-r )a~7.J  (6) 

where z is the thermal diffusivity of the melt. The 
governing system of differential equations is com- 
pleted by combining the three parts of equations (2) to 
obtain the equation for the streamfunction: 

O ( !  ~ r  1 8~1/" 
Or r aTr ) + r  az' - rS. (7) 

Symmetry conditions apply at the axis. On the cru- 
cible wall the no-slip velocity condition holds, and the 
temperature is specified. This temperature need not be 
the same all over the crucible: in order to get realistic 
approximation of what occurs in practice, we take the 
bottom to be slightly less hot than the sidewall. Sur- 
face-tension driven flow due to variations in surface 
tension along the melt surface is caused by the varia- 
tion in temperature along the surface. According to the 
relationship that la3ul3z =c3Y/Or at the free surface of 
the melt, the normal derivative of the radial velocity is 
proportional to the radial derivative of temperature, 
and the axial velocity vanishes. That is, 

1 3 u _  1 ( 1 ) 3 ) '  1 3T  
S= r az 7 7 g f = C ' ~ T a T  {8) 

where ?' is the surface tension. As a thermal boundary 
condition, we assume that the free surface loses heat 
by Stefan-Boltzmann radiation to surroundings that 
are taken to be at the freezing temperature of the melt. 

In summary the conditions obtaining on various 
segments of the computation region periphery are as 
follows: 

(a} Axis r = 0  
8w a T  =v=~=0, ~=0 

(b) Crucible bot tom z = 0  

u = w = 0 ,  v = r / a c , / a = / a c r ,  ~ 

2 
S =  r2 (Az) 2 1/r (r, Az, t) 

(e) Crucible wall r = R c  

u = w = 0 ,  v=Rcf2c,  Q=/acR~, T = T r  

2 
S -  R~(Ar) '  ~ ' ( R c - A r ' z '  t) 

(d) Interface z = H ,  r ~ R .  

u = w = 0 2  v = r / a . ,  / a= /a . r ' ,  T = T .  

2 
S -  r ~ (Az)' g (r, H -  zlz, t) 

(e) Free surface z = H , R ~ < r < R ~  

O v - w = : 0 ,  312 1 a T  
~z ~ z  =0,  S = C t ~ r  3r ' 

3T  2E* 
a t  [ = -  - -  ( T ' - T ~ )  

r a d t t a t r  A Z  ' 

1~ gr s 
where ~*= pc~,  e is the surface emissivity, and the 

parameters ,o, c~ and a~ are, respectively, the melt den- 
sity, the melt specific heat and the Stefan-Boltzmann 
constant. 

TECHNIQUE O F  SOLUTION 

The technique applied at the present study uses a 
system of grid regions. The simulation was carried out 
on a 21 x 30 grid, axially stretched to concentrate grid 
cells near the top and the bottom [13]. Specifically, 
there were three uniform regions such that 

z j =  ( j -  1) • (0.02cm), j = l , 2 , "  ..... 6; 

z j = 3 . 5 7 c m +  ( j -  13) • (0.97cm), j=13,  �9 ..... 17; 

z j = 1 2 . 0 c m - -  ( 3 0 - j ) x  (0.02cm), j=25,"  ...... 30. 

In between the above uniform regions, there are re- 
gions in which tile grid spacing is regulated by the ari- 
thmetic progression. The uniform radial grid spacing 
A r was chosen as 0.89 cm. 

The unsteady equations for the temperature,, Swirl 
and Svanberg vorticity were solved using the "power- 
law weighted upwind differencing" method. Details of 
the investigation were reported in ref. [14,1511. This 
method compensates the diffusion term by the intro- 
duction of the correction factor related to the grid 
Peclet number and has advantages when the convec- 
tion term is relalively dominant. Although somewhat 
more complicated than other numerical methods, this 
method provides an extremely good representation of 
the exact behavior. To save the computing time, the 
direct solution n-mthod with QL algorithm is used for 
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the calculation of magnetic current function and 
streamfunction[16]. 

RESULTS AND DISCUSSION 

A numerical simulation based on the formulation 
described above was carried out with the parameters 
shown in Table 1. The crucible of 14 incb(35.56cm) 
and the crystal of 5 inch(12.7cm) in diameter are cho- 
sen. The height of the melt is 12cm. Three fundamen- 
tal non-dimensional parameters can then be calculated 
from the above parameters as follows: 
Prandtl number (vlx) = 0.024 
Thermal Marangoni number 

( 3 7  ( T ~ - T ~ ) R ~ ) = 6 . 6 5 x l  0, 
3T  pv;r 

O r a s h o f  number 

(agR~ (T~- Ts) ) = 7 . 6 x  108 
i j  2 

A numerical investigation is carried out for various 
cases of magnetic field strength and rotation rates. 

Fig. 3 shows the streamlines with a magnetic field 
of 0.1 tesla for counter-rotation after 50 seconds. The 
intense circulation of the melt beneath the crystal 
growing interface is evident with a magnetic field of 
0.1 tesla. Following numerical simulations .are carried 
with the magnetic strength of 0.25 tesla since 0.1 tesla 
seems not enough to suppress the convection in the 
present study cases. The flow field usually is settled 
down after about 60 seconds of simulated time, and 
this was taken as the initial time. Fig. 4 shows the 
streamlines with a magnetic field of 0.25 tesla. This 
figure indicates that the convection is suppressed more 
than the case of 0.1 tesla, and the multicells in the in- 
terior represent that the flow becomes weaker gradual* 
ly. The study of Langlois and Lee[8,9] revealed that 
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Fig. 3. StreAmlines with a magnetic field of 0. l  teshl 
after 50 seconds. 
The contour spacing is 1.0 cm3/sec. 
Counter-rotation; ,.G' c = 1.57 radian/sec, g s  = -2.31 
radian/sec. 
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Fig. 4. Streamlines with a magnetic field of 0.25 tesla 
after I00 seconds. 
The contour spacing is 1.0 cm3/sec. 
Counter-rotation; ~c  = 1.57 radian/sec, ,-Qs - -2.31 
radian / sec. 

Table I. Physical parameters of silicon 

Melt density (p): 2.33 g/cm 3 

Specific heat capacity (%): 0.233 callg.K 

Thermal diffusivity.(x): 0.125 cm2/s 

Volumetric expansion coefficient (e): 0.0000141 / K 

Kinematic viscosity (v): 0.003 cm3ls 

Therlnocapillarity coefficient (qc): 14.9 cnils.K 

Emissivity (E) : 0.318 

Crystal temperature (Ts): 1685 K 

Crucible temperature (TO: 1773 K at the wall, decreasing 

linearly with radius to 1723 K al the center of Ihe bottom 

Electrical conductivity (a): 0.0000125/abohm-cm 

Stefan-Bollzmann constant (Crs}: 1.36x10 -12 ca[/cm2.s.K 4 

the higher magnetic field intensities, the greater was 
the numerical instability near the crucible bottom. By 
axially stretching the cell space to concentrate still 
more grid cells close to the top and the bottom, the nu- 
merical instability could be overcome. 

Transport of heat and trace constituents to the 
growth interface is influenced by the meridiona[ flow. 
The volume of melt which circulates in this flow Ls pro- 
portional to the difference between the maximum and 
minimum values of the Stokes streamfunction, which 
therefore provides a scalar measure of the convection 
strength. Fig. 5 plots the history of the quantity for 
three cases lnvolvfng counter-rotation of the crystal 
and the crucible. In each case the crystal rotation rate 
is -2.31 radian/sec. As shown in the figure, the con- 
vection strength at early stages decreases rapidly with 
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Fig. 5. Effect of the crucible rotation rate on the 
strength of the meridional circulation (coon- 
ter-rotation). 

increasing crucible rotation rate. As time advances, 
however, the curves coalesce. It thus appears that the 
crucible rotation rate does not strongly influence the 
convection suppression in the case of counter-rotation. 

For co-rotation, however, a crucible rotation of 2,31 
radian/sec is more effective for suppressing the con- 
vection than 1.57 radian/sec. This is shown in Fig. 6. 
The curves are the same whether 2.31 or 1.57 radian/ 
set: is used for the crystal rotation rate, suggesting that 
the circulation strength does not depend strongly on 
this quantity. 

Thus the relative sense of crystal and crucible rota- 
tion is an important factor for the conveclion strength. 
Fig. 7 illustrates the dependence. The convection 
strength with co-rotation is smaller than with the coun- 
ter-rotation, suggesting that, in conjunction with a 
magnetic field, co-rotation leads to less melt turmoil 
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Fig. 6. Effect of the crucible rotation rate on the 
strength of the meridional circulation(co- 
rotation). 
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than the conventional counter-rotation. A similar re- 
sult was found for the non-magnetic Czochralski flow 
in a shallow crucible[4]. 

Fig. 8 represents the streamlines after 100 seconds 
for the case of co-rotation. It is found that the melt con- 
vection in the case is more suppressed in comparison 
with the case of counter-rotation. The multice]ls in the 
interior region represent the decaying formation of the 
convection. The temperature distribution for the case 
of co-rotation is illustrated in Fig. 9. This figure shows 
that the variations at the neighborhood of the axis is 
smooth. However the variation is steep in the cases of 
counter-rotation and no rotation. Temperature gra- 
dients near the growth interface exert significant influ- 
ences on the crystal quality. That is, the temperature 
distribution beneath the interface indicates the convec- 
tion strength of the melt. 
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Fig. 8. Streamlines with a magnetic field of O.25 tesla 
after I00 seconds. 
The contour spacing is 1.0 cm3/ser 
Co-rotation; -Qc = 2.31 radian/ser G's= 1.57 ra- 
dian/sec. 
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Fig. 9. Temperature  distribution with  a magnetic  
field of 0.25 tesla after I00 seconds .  
Co-rotation; ,.Qc=2.31 radian/sec, ,.Q,~= 1.57 ra- 
dian I sec. 

C O N C L U S I O N S  

For a model system that can grow the 5 inch dia- 
meter single crystal from the melt in a 14 inch dia- 
meter cylindrical crucible, flow problems in the melt 
have been simulated by the use of numerical methods. 
When the axial magnetic force is used, the method of 
co-rotation of the crystal and the crucible is found 
more effective to suppress meridional circulation than 
the conventional counter-rotation operation. For coun- 
ter-rotation, the crucible rotation rate is relatively less 
sensitive to the convection suppression. However the 
crucible rotation of 2.31 radian/sec is more effective 
than that of 1.57 radian/sec to suppress the melt con- 
vection in the case of co-rotation. The power-law 
weighted upwind differencing method is used for the 
numerical solution of the parabolic equations and 
found very efficient in computing time-saving. In the 
present study, numerical simulations have been per- 
form(~ only for the ranges of conventional rotation 
rates. A further study for wide ranges of rotation rates 
should be worthwhile to obtain optimum operating 
conditions. 
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N O M E N C L A T U R E  

B : Magnetic field, tesla 
B o : Magnetic field strength, tesla 
% : Thermocapillarity coefficient, cmfsec-K 
c v : Specific heat capacity, cal/g. K 
g : Gravitational acceleration, cm/sec 2 

H 
J 
P 
Rc, Rs 

r 

S 
T 
Tc, Ts 
t 
V 

U, V, W 

Height of melt, cm 
Magnetic current density, Amperelcm 2 
Pressure, dyne/cm 2 
Radii of crucible and crystal, respectively, 
c m  

Distance along r-direction, cm 
Svanberg vorticity, l/cm-sec 
Temperature, K 
Temperature of crucible and crystal, K 
Time, sec 
Velocity vector, cmtsec 
Radial, azimuthal and axial velocity compo- 
nents, respectively, cm/sec 
Distance along z-direction, cm 

G r e e k  L e t t e r s  

8 

# 
a" 

as 

9c,  Qs 

Volumetric expansion coefficient, I/K 
Surface tension, dynes/cm 
Emissivity 
Coefficient defined in equation(3), a B~ / P 
Thermal diffusivity, cm2/sec 
Viscosity, g/cm.sec 
Kinematic viscosity, cm2/sec 
Density, g/cm 3 
Electrical conductivity, 1/abohm-cm 
Stefan-Boltzmann constant, cal/cm2.sec.K 4 
Streamfunction, cm3/sec 
Magnetic current function, cm3/sec 
Swirl, cm2/sec 
Rotation rates of crucible and crystal, res- 
pectively, radian/sec 
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